荷花疏水性
㈠ 荷花上的水表面张力是怎么一回事
叶上有角质层 花上有透明防水膜 莲花效应其实是一个很常见的现象,几乎人人都有看过,只是不知道莲花效应是什麼意思,莲花效应主要是指莲叶表面具有超疏水以及自洁的特性。由於莲叶具有疏水、不吸水的表面,落在叶面上的雨水会因表面张力的作用形成水珠,当水与叶面的接触角大於140度,水珠就会滚离叶面。因此,即使经过一场倾盆大雨,莲叶的表面总是能保持乾燥;此外, 在电子显微镜下,莲叶的表面有大小约5~15微米细微突起的表皮细胞,上层覆盖著一层直径约1奈米的蜡质结晶。蜡质结晶具有疏水性,所以当水与这类表面接触时,会因表面张力而形成水珠,再加上叶表的细微结构之助,使滚动的水珠会顺便把一些灰尘污泥的颗粒一起带走,达到自我洁净的效果,这就是莲花总是能一尘不染的原因。
㈡ 莲花出淤泥而不染,它自我清洁是什么原理
莲花之所以能够出淤泥而不染,就是因为所谓的荷叶效应。在之前就有研究植物学的科学家在研究植物的的时候发现,有些叶子表面虽然比较光滑,但还是覆盖有灰尘,所以需要清洗过后才能进行观察。而可以防水莲叶这种就不需要经过清洗就可以直接进行观察。之后他们经过研究发现了荷叶有一种特殊的结构,它们可以直接自我清洁。而古代的人们因为莲花总是能够做到出淤泥而不染而觉得莲花就是纯洁的象征,所以学者们又把这个现象称之为荷叶效应。
而科学家们根据荷叶效应开发的材料又称为莲花效应。因为这种材料具有跟荷叶一样的特性,所以称为莲花效应。有很多领域运用到了这种效应,因此节约了许多的成本,只是运用范围还没有很广,比如工业企业暂时还无法做到这个功能。
㈢ 荷花的品质是什么
荷花是圣洁的代表,更是佛教神圣净洁的象征。
荷花出尘离染,清洁无瑕,故而中国人民和广大佛教信秆都以荷花"出淤泥而不染,濯清涟而不妖"的高尚品质作为激励自已洁身自好的座右铭。
荷花是友谊的象征和使者。中国古代民间就有春天折梅赠远,秋天采莲怀人的传统。
㈣ 为什么莲花叶子不沾水
莲花叶子的叶面上布满了一个紧挨一个的“小山包”,“山包”上长满绒毛,好像山上密密的植被,“山包”的顶上又长出一个馒头状的“碉堡”凸顶。因此,在“山包”的凹陷处充满了空气,这样就在紧贴的叶面上形成一层极薄的只有纳米级的空气层。由于雨水和灰尘对于叶面上的这些微结构来说,无异于庞然大物,于是,当雨水和灰尘降落时,隔着一层纳米空气,它们只能同“小山包”上的“碉堡”凸顶构成几个点的接触,无法进一步“入侵”。水形成水珠,滚动着洗去了叶面的尘埃。莲花叶子的这种纳米级的超微结构,不仅有利于它自洁,还有利于防止空气中飘浮的大量的各种有害细菌和真菌对它的侵害。
㈤ 荷花为什么能出于淤泥而不染
叶上有角质层
花上有透明防水膜
莲花效应其实是一个很常见的现象,几乎人人都有看过,只是不知道莲花效应是什麼意思,莲花效应主要是指莲叶表面具有超疏水以及自洁的特性。由於莲叶具有疏水、不吸水的表面,落在叶面上的雨水会因表面张力的作用形成水珠,当水与叶面的接触角大於140度,水珠就会滚离叶面。因此,即使经过一场倾盆大雨,莲叶的表面总是能保持乾燥;此外, 在电子显微镜下,莲叶的表面有大小约5~15微米细微突起的表皮细胞,上层覆盖著一层直径约1奈米的蜡质结晶。蜡质结晶具有疏水性,所以当水与这类表面接触时,会因表面张力而形成水珠,再加上叶表的细微结构之助,使滚动的水珠会顺便把一些灰尘污泥的颗粒一起带走,达到自我洁净的效果,这就是莲花总是能一尘不染的原因。
㈥ 莲花出淤泥而不染的秘密中什么叫莲花效应
莲叶效应主要是指莲叶表面具有超疏水(superhydrophobicity)以及自洁(self-cleaning)的特性。由于莲叶具有疏水、不吸水的表面,落在叶面上的雨水会因表面张力的作用形成水珠,换言之,水与叶面的接触角(contactangle)会大于150度,只要叶面稍微倾斜,水珠就会滚离叶面。因此,即使经过一场倾盆大雨,莲叶的表面总是能保持干燥;此外,滚动的水珠会顺便把一些灰尘污泥的颗粒一起带走,达到自我洁净的效果,这就是莲花总是能一尘不染的原因。
德国教授巴斯洛得利用人造的灰尘粒子污染赫蕉、倪藤、玉兰、林山毛榉、莲花、芋、甘蓝及Mutisiadecurrens等八种植物的叶面,然后用人造雨清洗两分钟,最后将叶面倾斜15度,使雨水滑落,观察叶子表面灰尘粒子残留的状况。实验发现,前四种植物之叶面,所残留的污染物多达40﹪以上;而后四种植物,污染物所残留的比例皆小于5﹪.
莲之所以出淤泥而不染的原因是莲叶的表面非常细致,其细致的表面放大千百倍也看不到其中的细孔,表面结构与粗糙度皆为纳米的尺寸使得表面不沾水,所以灰尘或泥巴都无法吸附在表面上,故污垢自然随水滴从表面滑落。莲花运用自然的奈米结构达到自洁的效果,如此表面自我洁净的物理现象称为『莲叶效应』!
㈦ 荷花效应是什么意思
荷花效应也叫作自清洁效应,可以应用到很多地方。最主要的就是一个是应用在织物上面,比如说防水,防油的领带,还有鄂尔多斯防水防油的羊绒衫。还有一个就是自清洁的玻璃。如果我们将这种原理,运用到汽车的烤漆、建筑物的外墙、或是玻璃上,不但随时可以保持物体表面的清洁,也减少了洗涤剂对环境的污染,可以说既安全又省力。
上个世纪七十年代,德国植物学分类的科学家--威廉·巴特洛特,他和同事在试验中,偶然发现了一个有反常规的现象。
按惯例,实验用的植物都要被清洗干净的,可是他们注意到:通常只有那些表面光滑的叶子才需要清洗,而看起来粗糙的叶子,往往很干净。尤其是荷叶,它的表面不但不带灰尘,而且连水都不粘。
荷花的生长少不了淤泥的,因为它提供了非常丰富的腐殖质,供荷花的生长所需。可是破水而出的荷叶上,不但淤泥、灰尘不粘,就连水滴也很难在上面安安稳稳地呆上一会儿,仿佛自己就能把叶片打扫得干干净净的。
自古就有这么一说,就是因为当水珠落在荷叶上的时候,它由于表面粗糙,就是表面张力的作用,那么水珠会变成球状,或者是近似球状的,然后呢,它会滚离荷叶表面,然后就是带走荷叶上面的一些污浊的物质。
其实这出淤泥而不染,主要说的就是荷叶。
那么为什么它会有自清洁的特性呢?最开始人们认为是荷叶上那层白色的蜡质结晶决定的。
它表面就是有一层蜡质的物质, 我们用眼睛就可以直接看到,而用手也能感受到。您可以用手摸一下,它有一种粗糙的感觉。
荷叶表皮细胞分泌的蜡质结晶,在电子显微镜下,呈现出线状或是毛发状的结构,并且在叶片的正面和背面都有分布。但是水在叶片背面无法形成球状自如的滚动,反而还会滞留在中心。
那么再跟其它植物的叶片做个比较。远了不提,就拿跟荷花同一科的睡莲来说,它的叶子正面也有蜡,可是水滴上去,很快就铺平、蔓延开了,更达不到水珠在荷叶上大珠小珠落玉盘的效果。所以除了蜡质结晶之外,一定还另有门道。
如果用电子显微镜观察的话,就会发现它(叶)表面有一些这种微小的这种突起,这种微小的突起是这种微米级的微小的突起,然后这种微小的微米级的突起上面,又形成一种纳米级的突起。
我们触摸荷叶时粗糙的感觉,实际上就是由这些微小的突起产生的,它们平均大小约为10微米。而那些更小的突起,直径只有200个纳米左右。
要知道微米只有毫米的千分之一,而纳米更是小到一定程度了,它只有微米的千分之一。到底有多大?我给您打个比方,假设一根头发的直径是0.05毫米的话,嚓、嚓、嚓、嚓,把它纵向剖成5万根,那每根的厚度大约就是1个纳米,够小的吧。
没想到吧,在荷叶粗糙的表面上,竟然有着这么精细的微米加纳米的双重结构。
第一个结构就是它的那个微米级的乳凸,大概可能是10微米,到12微米,这么一个大小,然后深度可能是12到15微米之间,这种乳凸,然后乳凸上面有一个那个,就是表皮分泌的蜡质结晶,那个在电子显微镜的观察下,可以看出来它是那种毛发或者是线状的结构。
也就是说,在那些"微米尺度"的小山上又叠加了许多"纳米"小山。这样一来荷叶的表面,就布满了"山头","山"与"山"之间的空隙非常窄,再小的水滴也只能在 "山头"上跑来跑去。而水滴在滚动的时候,也就带走了叶子上的尘土和细菌。
那么是不是有了这样的结构,就能保证荷叶不沾水了呢?
科学家很快又发现,如果我们把荷叶放到水里浸泡一段时间,荷叶表面会从疏水变得亲水,这又是为什么呢?
德国有一个科学家做过这个实验,把荷叶放到水里10米以下再拿出来的时候,再测它就变成亲水了,因为它就是诱捕在乳凸和纳米结晶之间那个空气被排除了,是那个水分子一点一点的进去,进到那个空气的膜里,把空气排出以后,它这个就变成了亲水了。
原来,那些个头远远超过 "小山"的水珠和尘埃,之所以能在"山头"上跑来跑去,不单是因为山之间的缝隙太小,最关键的是因为山和山之间都被空气填地严严实实,形成了一个类似气垫的东西,把水滴给隔开了。如果气垫没有了荷叶也会变得亲水。
浸在水中的荷叶,由于压力的作用,把这层空气从小山中间挤了出去,因此就出现了科学家所看到的现象。
自从发现了荷叶不粘水的自清洁特点之后,人们就把这种现象称为荷花效应。但其实,在自然界有很多生物都表现出类似的特点。
水稻的叶子也是不粘水的,与荷叶的不同在于,荷叶上的水滴,可以在平面内向各个方向运动。而水稻叶片上的水滴通常是沿着叶脉的方向滚落,垂直叶脉的时候,相对就有些困难。但是这都与它们各自叶片的形状相适应。
不光是植物,动物也有。比如说,水黾它在水上行走时就是,水黾腿在水上直立行走,其实也是因为水黾腿它是一个超疏水的,所以因为它表面张力的作用会把水排开,然后支撑它的身体,然后让它跳跃,蚊子也是。
尽管如此,人们始终认为荷叶的表面结构,所体现的自清洁特性最为完美,一直希望能模仿它,从而制造出各种各样的疏水材料。
这事儿看起来很简单,做起来难。您想,那么精细的形态,都是我们通过电子显微镜才看清楚的,想凭这样两只手去复制类似结构,几乎不可能,因此,这里头有着非常高的技术含量。不过在科学家的帮助下,我们的梦想正在慢慢照进现实。
㈧ 谁能完整的叙述一下荷花效应
莲叶不沾尘及不沾水的原理,经研究发现是因其叶面并非平滑表面版,而是具备规则权排列且均一大小突起物,统称为「粗糙面」或「粗糙层」,经放大后可看到尺寸大小为100~200奈米左右,一根根盘交错节的纤毛状物。其组成主要成分是碳氢化合物,即是我们所熟知的「腊质」。
此「粗糙层」能将空气保留再突起物间的底部,使外在的污染物或液体五法完全沾附於莲叶上。被局限在这奈米粗糙层中的空气,犹如是在莲叶表面形成一层气垫(Air Cushion),污染物或液体是由空气所支撑著,盘交错节的纤毛状「腊质」,其结构亦有助於减少外来物与叶面接触的面积,由於其组成成分为一疏水性非常高的碳氢化合物物质(属「低表面能材料」),与水滴间的界面张力非常大,水滴不易沾粘。基此两大原因,使莲叶形成一超疏水表面,水滴接触角度高於150度以上。即使污物附著於其上,也可轻易地以水冲刷洗净,达到自洁效果,这就是所谓的「莲花效应」或「荷叶效应」。
㈨ 荷叶叶面为什么不沾水
那么荷叶上的露珠为什么不渗透,不沾水原理又有哪些。在显微镜下,我们可以发现,荷叶的表面布满了高度约为五到九微米的乳突,乳突之间的距离约为十二微米,更细致一点的地方,我们可以看见每个乳突上面,都长着许多的蜡状突起,这些蜡状突出直径约为二百纳米。
如果荷叶面上的蜡状突起受到损害和破损的时候,荷叶的自净能力被破坏的时候,就无法被阻挡了,假如叶面受损不严重的话,还是可以通过正常的生长分泌蜡质,等到蜡质分泌的增多,荷叶的自净能力就得到了恢复。很多防水的东西就是通过荷叶表面的构造进行生物仿生学,造了很多防水用品。比如防水衣服,还有防水防油的餐具,耐脏布料等等。最著名的就是德国植物学家发现了荷叶抗脏自洁的原理制造发明了荷叶膜,还有很多的仿生物技术还未发明。