荷花问题解答
『壹』 探讨“荷花问题”
你理解错了错了,建议阅读别莱利曼写的《趣味几何学》,在第二章“河边的几何学”中,“水池的深度”那一课。祝你越学越好哦。
『贰』 荷花问题 就是八年级的勾股定理, 请将答案写详细并标明为什么。 O(∩_∩)O谢谢
初二几何(勾股定理)
“荷花问题”:
平平湖水清可鉴,专面上半尺生红莲,
出泥不染亭亭立,属呼被强风吹一边,
渔人观看忙上前,花离原为二尺远,
能算储君请解题,湖水如何知深浅
解答提示:
设水深是X尺,根据题意得方程:
(X+0.5)^2-X^2=2^2
解得:
X=3.75
所以水深为3.75尺
供参考!
『叁』 荷花问题如何解答
设水深为x
则风吹前后与水面形成一个直角三角形
斜边长x+0.5
一个直角边为2(花离原位二尺远,即水面)
另一个直角边为水深
利用勾股定理
(x+0.5)^2=2^2+x^2
解得x=3.75(尺)
『肆』 数学问题拜斯迦罗的荷花问题
设荷花秸秆长 x ,则水深 x-0.5.
由勾股定理得,2*2+(x-0.5)*(x-0.5)=x*x
解得,x=4.25
所以水深为 4.25-0.5=3.75
『伍』 荷花问题的问题解法
题目:平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?
花离原位二尺远意思是图中AC线段的长而不是线段CD的长,因此列如下的方程:
解:设湖水深x尺,则荷花高度为(x+0.5)尺,依题意可列式:
在RT△ADC中 根据勾股定理得
AD²+DC²=AC²
∵AD=0.5 AC=2
∴DC²=3.75
在RT△DCB中 根据勾股定理得
x²+DC²=(x+0.5)²
解得x=3.5
『陆』 同学过的数学知识解答 荷花问题
设水深x 那么荷花长0.5+x
方程为 x的平方+2的平方=(x+0.5)的平方 实际上形成了直角三角形 根据勾股定理列出方程解得x=3.75尺
『柒』 荷花问题
首先,一尺=1/3米。半尺=1/6米。
设荷花在水中的部分等于x米。
其多出部分等于半尺=1/6米(如题所示专)
则整个荷属花就是(x+1/6)米
则根据勾股定理,可得出方程
整根荷花(x+1/6)的平方+2尺(2/3米)的平方=x的平方
『捌』 荷花问题的介绍
一个高出水面1/4腕尺(一种古时长度单位)的荷花在距原地2腕尺处正好浸入水中,求莲花的高度专和水的深属度。本题亦称荷花问题(problem of lotus flower)。原记载于印度古代约公元600年的数学家婆什迦罗第一部著作《阿耶波多历书注释》中。到12世纪,印度另一位著名数学家婆什迦罗第二次在他的名著《丽罗娃提》中重新阐述了这一问题,只将高出水面的1/4尺改为1/2尺,并用歌谣的形式记载下来,使莲花问题 成为几何定理应用的典型问题之一。14世纪印度另一位数学家纳拉亚讷也在著作中记述过类似的问题。
『玖』 谁能解答印度数学家什迦逻曾提出的“荷花问题”
您好!
解:设水深是X尺,根据题意得方程:
(X+0.5)^2-X^2=2^2
解得:
X=3.75
所以水深为3.75尺
『拾』 解荷花问题
请把问题补充全面了我再来回答.多谢!