當前位置:首頁 » 盆栽知識 » 綠植散發氧氣

綠植散發氧氣

發布時間: 2022-05-29 13:14:40

① 植物為什麼會散發出氧氣

不僅是仙人掌,只要是綠色植物都會在有光的時候進行光合作用,釋放出氧氣喔,這叫做光合作用中的光反應階段。不過在夜晚沒光的時候他們就不能釋放氧氣啦,還會吸收一些氧氣呢,這就是暗反應階段。
光合作用(Photosynthesis)是植物、藻類和某些細菌利用葉綠素,在可見光的照射下,將二氧化碳和水轉化為葡萄糖,並釋放出氧氣的生化過程。
換句話說,最主要的原因就是因為有了葉綠體和光,植物便可以將二氧化碳轉化為氧氣和有機物。
你如果想了解一些更加具體的情況可以去http://ke..com/view/8885.htm

② 哪些綠植不僅能夠美化居室,還能吸收室內甲醛,釋放氧氣呢

如果在家裡養綠植的話,推薦大家養鶴望蘭。這是一種大型的盆栽,不僅可以放在客廳,也可以放在卧室。一年四季葉子常青,雖然花型非常獨特,但是整體的觀賞性依舊非常高。鶴望蘭吸收甲醛的效率很高,因此大家不要錯過這一盆植物。

三、綠蘿

有很多人都非常喜歡養綠蘿,因為綠蘿的生長性和頑強。在家裡裝修的時候,有很多人就已經買了綠蘿。如果已經搬進去住了,綠蘿也是可以直接拿來用的。綠蘿這種植物的寓意很好,一年四季給大家帶來生機勃勃的感覺。因此如果想要家裡充滿綠色,綠蘿一定是大家最好的選擇。在種植綠蘿的時候,可以直接放在一個大盆里,隔一個月澆一次水,一段時間過後綠蘿也會長得很好。

③ 植物真的會釋放氧氣嗎

大部分植物都是在白天吸收二氧化碳釋放氧氣,在夜間則相反。但仙人掌、虎皮蘭、景天、蘆薈和吊蘭等都是一直吸收二氧化碳釋放氧氣的。
植物體的光合作用與呼吸作用並存,各自行使著生物學功能和使命,互相協同。表觀為光合作用釋放氧氣,吸收二氧化碳;呼吸作用釋放二氧化碳,吸收氧氣。光合作用的強弱決定了植物體釋放氧氣的多少,但並不是說光合作用能夠決定呼吸作用,二者並不存在絕對的依存關系。光合作用的主要控制因素是光照,而呼吸作用主要的控制因素是溫度。植物的呼吸作用是一直存在的,包括白天和夜晚;而光合作用主要發生在白天。這也就決定了大多數植物體無論是白天還是夜晚都在釋放著二氧化碳,吸收著氧氣;但是在有光照的時候,光合作用遠遠超過呼吸作用,使得呼吸作用釋放的二氧化碳幾乎直接被光合作用所利用,這也就表現為植物在白天釋放氧氣吸收二氧化碳了。
對於多肉植物,由於這一類植物的細胞採用「景天科酸代謝途徑(CAM)」。所以與其它的C3、C4植物有所不同,這一類植物在白天氣孔關閉,不發生或者極少發生著氣體交換。而在夜晚則不同,它們會進行光合作用和呼吸作用的氣體交換,表觀上還是釋放的氧氣遠遠多於二氧化碳,這一點與其他植物是大大不同的。但這並不等於多肉植物的光合作用發生在夜晚,其實這些二氧化碳被儲存在葉肉細胞的有機酸(如:蘋果酸)中,當有光照的時候這些有機酸在維管束鞘細胞中分解釋放二氧化碳供光合作用使用

④ 綠植會在晚上吸收氧氣釋放二氧化碳,晚上放在卧室真的有危險嗎

植物在抄進行光合作用的同時也襲進行呼吸作用。白天,光線充足,光合作用比呼吸更大。因此,通常會放出氧氣並吸收二氧化碳。但是,到了晚上,當光線不足並且呼吸大於光合作用時,它將吸收氧氣並釋放二氧化碳。

3.鶴望蘭。也被稱為天堂鳥。形狀清新典雅,花朵奇特,美麗壯觀,是觀賞花卉的高貴之花。已成為舉世聞名的花卉。常綠植物,例如潮濕的環境,可以在夜間吸收二氧化碳,從而增加空間中負氧離子的濃度。

⑤ 能在夜間釋放氧氣的植物有哪些

卧室可是我們睡覺的地方,我們的一生至少有三分之一的時間是在卧室中度過,卧室是我們睡眠休息的場所,能夠直接影響到我們的身體健康,有些朋友也喜歡在卧室中養一盆綠植,既有觀賞價值又能凈化空氣,不過在綠植的選擇上,可是有學問的,不能隨便選擇和人搶氧氣的綠植。

5.茉莉.有專家研究表明,茉莉是天然的睡眠助手,能夠提升我們的睡眠質量,還能夠減少焦慮改善我們的情緒,茉莉花不耐旱更不耐澇,盛夏季節是茉莉的生長旺季,多施一點有機肥和磷鉀肥,每個月兩次就可以,這樣能夠保證茉莉花枝繁葉茂開花多,不過要避免施用過多的氮肥,以磷鉀肥為主能夠促進現花現蕾。

⑥ 在裝修中,養什麼綠植可以增加氧氣含量

在家裡養護室內植物想要凈化空氣,除了要養在合適的位置,還要挑選適合的凈化綠植,下面這7種就是凈化空氣非常好的,養護的時候就要給予通風和適當的光照,這樣才能讓植物發揮最大的凈化效果。

1、龜背竹

白掌被人們稱作是「吸毒」植物,可以有效吸收室內的有害氣體,包括常見的氨氣、苯和甲醛等,在室內養幾盆水培白掌,還有一定的增濕效果,白掌也能適應較為遮陰的環境,養護簡單。

白掌還能凈化室內空氣中的一些揮發有機物,包括酒精、甲苯、三氯乙烯和油煙等。

⑦ 什麼綠色植物晚上是放氧的

仙人掌(球)、褐毛掌、矮蘭伽藍菜(長壽花)、條紋伽藍菜、肥厚景天、杯狀落地生根、栽培鳳梨、虎皮蘭、虎尾蘭、龍舌蘭、蘆薈、氣生性蘭類(如蝴蝶蘭)、部分蕨類(如鳥巢蕨)等。

1、仙人掌(球):仙人掌能吸收輻射,增加氧氣都是流言。我們擺在電腦旁的仙人掌都容易早死,並非因為輻射,而是因為仙人掌的花盆一般是塑料質地的,這種質地的花盆其實透氣和透水性很差,而仙人掌耐旱不耐水,因此迅速地死去。所以擺在電腦旁的仙人掌活得不長久和電腦沒有任何關系,只是養護方式出現了問題。

2、長壽花:聖誕伽藍菜原產非洲馬達加斯加。喜溫暖稍濕潤和陽光充足環境。不耐寒,生長適溫為15-25℃,夏季高溫超過30℃,則生長受阻,冬季室內溫度需12-15℃。低於5℃,葉片發紅,花期推遲。冬春開花期如室溫超過24℃,會抑制開花,如溫度在15℃左右,開花不斷。耐乾旱,對土壤要求不嚴,以肥沃的砂壤土為好。長壽花為短日照植物,對光周期反應比較敏感。

3、虎皮蘭:虎尾蘭較耐寒,冬季室溫只要不低於8℃仍能緩慢生長,當室溫降到3℃左右時葉片受凍萎縮。怕暑熱,生 長適溫為20~28℃。耐陰性極強,可常年在蔭蔽處生長,怕陽光暴曬。

4、蘆薈:蘆薈(即庫拉索蘆薈)是蘆薈屬中少數可食用的物種之一 ,其製品被廣泛應用於食品、美容、保健、醫葯等領域。但蘆薈也具有一定毒性,孕婦、嬰幼兒不宜食用。普通人每日食用庫拉索蘆薈凝膠不宜超過30克。

5、蝴蝶蘭:蝴蝶蘭出生於熱帶雨林地區,本性喜暖畏寒。生長適溫為15~20℃,冬季10℃以下就會停止生長,低於5℃容易死亡。原產馬來西亞熱帶地區的蝴蝶蘭屬蘭科蝴蝶蘭屬,是一種多年生草本植物。高溫高濕河川海岸邊的森林樹木是蝴蝶蘭附著生長的地方。

(7)綠植散發氧氣擴展閱讀:

綠植的優點:

1、吸毒氣凈空氣

一些綠色植物可以有效地吸收由房屋裝修而產生的有毒的化學物質,比如吊蘭、虎尾蘭、一葉蘭、龜背竹吸收甲醛的能力就特別強;而金魚草、牽牛花、石竹則能通過將毒性很強的二氧化硫經過氧化作用轉化為無毒或低毒性的硫酸鹽化合物;鐵樹、菊花、石榴、山茶等能有效地清楚二氧化硫、氯、一氧化碳過氧化氮等有害物質。

2、增加濕度不上火

一般來說,室內的相對濕度不應低於30%,如果濕度過低或過高都會對人體健康產生不良影響。在室內種植一些對水分有高度要求的要求,比如綠蘿、常春藤、杜鵑、蕨類植物等,會使室內的濕度以自然的方式增加,成為天然的加濕器。

綠植

3、天然吸塵器

有研究顯示,蘭花、花葉芋、紅背桂等是天然的除塵器,他們植株上的纖毛能截取並吸附空氣中漂浮的微粒及煙塵。如果房間內有足夠數量的此類植物,那麼房間中的漂游微生物和浮塵的含量都會降低。

4、殺菌消毒保健康

紫薇、茉莉、檸檬等植物的花和葉片,5分鍾內就可以殺死白喉菌和痢疾菌等原生菌。薔薇石竹、鈴蘭、紫羅蘭玫瑰、桂花等植物散發的香味對結核菌、肺炎球菌、葡萄球菌的生長繁殖具有明顯的抑製作用。

5、製造氧氣和負離子

大部分植物在白天都會通過光合作用釋放氧氣,尤其要指出的是仙人掌類多肉植物,其肉質莖上的氣孔白天關閉,夜間打開,所以在白天釋放二氧化碳,夜間則吸收二氧化碳,釋放出氧氣。

⑧ 能釋放氧氣的花卉都有啥

釋放氧氣的高手還有好多,像棕櫚樹,琴葉榕,蘭花等等,還有好多,但適合卧室養殖的,還是需要一些中小型的盆栽和制氧高手,這樣,既不佔空間,還能改善卧室的空氣質量,要是喜歡上面的幾種花卉綠植,記得養上一些。覺得有用的,點贊走一波,謝謝!

⑨ 有什麼植物適合養在家裡,並且晚上可以釋放比較多的氧氣

在家裡養一些花花草草,既美觀又能夠提供一定的氧氣,適合在家裡養,並且晚上可以釋放比較多氧氣的綠色植物有蘆薈、虎皮蘭。比較好的花有長壽花和鴻運當頭花,接下來給大傢具體說明。3.大部分植物在晚上都會提供氧氣,我們可以根據自己的需要選擇。
一般我們去花卉市場的時候,都可以咨詢老闆哪種植物更適合自己。不能自己去山裡尋找植物種植,因為花卉市場的植物大部分對人體都是有益的。


總而言之,有很多的花草都適合在室內養殖,而且大部分花草都是晚上吸收二氧化碳釋放氧氣,能夠促進人的睡眠,提高人的睡眠質量。例如綠色植物蘆薈和虎皮蘭,還包括長壽花和鴻運當頭花,我們可以根據自己的需要來選擇這些植物。

⑩ 植物散發氧氣是什麼作用

光合作用
光合作用(Photosynthesis)是植物、藻類和某些細菌利用葉綠素,在可見光的照射下,將二氧化碳和水轉化為葡萄糖,並釋放出氧氣的生化過程。植物之所以被稱為食物鏈的生產者,是因為它們能夠通過光合作用利用無機物生產有機物並且貯存能量。通過食用,食物鏈的消費者可以吸收到植物所貯存的能量,效率為30%左右。對於生物界的幾乎所有生物來說,這個過程是他們賴以生存的關鍵。而地球上的碳氧循環,光合作用是必不可少的。

光合作用的發現

古希臘哲學家亞里士多德認為,植物生長所需的物質全來源於土中。

荷蘭人范·埃爾蒙做了盆栽柳樹稱重實驗,得出植物的重量主要不是來自土壤而是來自水的推論。他沒有認識到空氣中的物質參與了有機物的形成。

1771年,英國的普里斯特利發現植物可以恢復因蠟燭燃燒而變「壞」了的空氣。

1773年,荷蘭的英恩豪斯證明只有植物的綠色部分在光下才能起使空氣變「好」的作用。

1804年,瑞士的索緒爾通過定量研究進一步證實二氧化碳和水是植物生長的原料。

1845年,德國的邁爾發現植物把太陽能轉化成了化學能。

1864年,德國的薩克斯發現光合作用產生澱粉。

1880年,美國的恩格爾曼發現葉綠體是進行光合作用的場所。

1897年,首次在教科書中稱它為光合作用。

原理

植物與動物不同,它們沒有消化系統,因此它們必須依靠其他的方式來進行對營養的攝取。就是所謂的自養生物。對於綠色植物來說,在陽光充足的白天,它們將利用陽光的能量來進行光合作用,以獲得生長發育必需的養分。

這個過程的關鍵參與者是內部的葉綠體。葉綠體在陽光的作用下,把經有氣孔進入葉子內部的二氧化碳和由根部吸收的水轉變成為葡萄糖,同時釋放氧氣:

12H2O + 6CO2 + 光 → C6H12O6 (葡萄糖) + 6O2↑+ 6H2O

注意:

上式中等號兩邊的水不能抵消,雖然在化學上式子顯得很特別。原因是左邊的水,是植物吸收所得,而且用於製造氧氣和提供電子和氫離子。而右邊的水分子的氧原子則是來自二氧化碳。為了更清楚地表達這一原料產物起始過程,人們更習慣在等號左右兩邊都下寫上水分子,或者在右邊的水分子右上角打上星號。

光反應和暗反應

光合作用可分為光反應和暗反應兩個步驟

光反應

場所:葉綠體膜

影響因素:光強度,水分供給

植物光合作用的兩個吸收峰

葉綠素a,b的吸收峰過程:葉綠體膜上的兩套光合作用系統:光合作用系統一和光合作用系統二,(光合作用系統一比光合作用系統二要原始,但電子傳遞先在光合系統二開始)在光照的情況下,分別吸收680nm和700nm波長的光子,作為能量,將從水分子光解光程中得到電子不斷傳遞,最後傳遞給輔酶NADP。而水光解所得的氫離子則因為順濃度差通過類囊體膜上的蛋白質復合體從類囊體內向外移動到基質,勢能降低,其間的勢能用於合成ATP,以供暗反應所用。而此時勢能已降低的氫離子則被氫載體NADP帶走。一分子NADP可攜帶兩個氫離子。這個NADPH+H離子則在暗反應裡面充當還原劑的作用。

意義:1:光解水,產生氧氣。2:將光能轉變成化學能,產生ATP,為暗反應提供能量。3:利用水光解的產物氫離子,合成NADPH+H離子,為暗反應提供還原劑。

暗反應

實質是一系列的酶促反應

場所:葉綠體基質

影響因素:溫度,二氧化碳濃度

過程:不同的植物,暗反應的過程不一樣,而且葉片的解剖結構也不相同。這是植物對環境的適應的結果。暗反應可分為C3,C4和CAM三種類型。三種類型是因二氧化碳的固定這一過程的不同而劃分的。

卡爾文循環

卡爾文循環(Calvin Cycle)是光合作用的暗反應的一部分。反應場所為葉綠體內的基質。循環可分為三個階段: 羧化、還原和二磷酸核酮糖的再生。大部分植物會將吸收到的一分子二氧化碳通過一種叫二磷酸核酮糖羧化酶的作用整合到一個五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此過程稱為二氧化碳的固定。這一步反應的意義是,把原本並不活潑的二氧化碳分子活化,使之隨後能被還原。但這種六碳化合物極不穩定,會立刻分解為兩分子的三碳化合物3-磷酸甘油酸。後者被在光反應中生成的NADPH+H還原,此過程需要消耗ATP。產物是3-磷酸丙糖。後來經過一系列復雜的生化反應,一個碳原子將會被用於合成葡萄糖而離開循環。剩下的五個碳原子經一些列變化,最後在生成一個1,5-二磷酸核酮糖,循環重新開始。循環運行六次,生成一分子的葡萄糖。

C3類植物

二戰之後,美國加州大學貝克利分校的馬爾文·卡爾文與他的同事們研究一種名叫Chlorella的藻,以確定植物在光合作用中如何固定CO2。此時C14示蹤技術和雙向紙層析法技術都已經成熟,卡爾文正好在實驗中用上此兩種技術。

他們將培養出來的藻放置在含有未標記CO2的密閉容器中,然後將C14標記的CO2注入容器,培養相當短的時間之後,將藻浸入熱的乙醇中殺死細胞,使細胞中的酶變性而失效。接著他們提取到溶液里的分子。然後將提取物應用雙向紙層析法分離各種化合物,再通過放射自顯影分析放射性上面的斑點,並與已知化學成份進行比較。

卡爾文在實驗中發現,標記有C14的CO2很快就能轉變成有機物。在幾秒鍾之內,層析紙上就出現放射性的斑點,經與一直化學物比較,斑點中的化學成份是三磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中間體。這第一個被提取到的產物是一個三碳分子, 所以將這種CO2固定途徑稱為C3途徑,將通過這種途徑固定CO2的植物稱為C3植物。後來研究還發現, CO2固定的C3途徑是一個循環過程,人們稱之為C3循環。這一循環又稱卡爾文循環。

C3類植物,如米和麥,二氧化碳經氣孔即如葉片後,直接進入葉肉進行卡爾文循環。而C3植物的維管束鞘細胞很小,不含或含很少葉綠體,卡爾文循環不在這里發生。

C4類植物

在20世紀60年代,澳大利亞科學家哈奇和斯萊克發現玉米、甘蔗等熱帶綠色植物,除了和其他綠色植物一樣具有卡爾文循環外,CO2首先通過一條特別的途徑被固定。這條途徑也被稱為哈奇-斯萊克途徑。

C4植物主要是那些生活在乾旱熱帶地區的植物。在這種環境中,植物若長時間開放氣孔吸收二氧化碳,會導致水分通過蒸騰作用過快的流失。所以,植物只能短時間開放氣孔,二氧化碳的攝入量必然少。植物必須利用這少量的二氧化碳進行光合作用,合成自身生長所需的物質。

在C4植物葉片維管束的周圍,有維管束鞘圍繞,這些維管束鞘案由葉綠體,但裡面並無基粒或發育不良。在這里,主要進行卡爾文循環。

其葉肉細胞中,含有獨特的酶,即磷酸烯醇式丙酮酸碳氧化酶,使得二氧化碳先被一種三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草醯乙酸,這也是該暗反應類型名稱的由來。這草醯乙酸在轉變為蘋果酸鹽後,進入維管束鞘,就會分解釋放二氧化碳和一分子丙酮酸。二氧化碳進入卡爾文循環,後同C3進程。而丙酮酸則會被再次合成磷酸烯醇式丙酮酸,此過程消耗ATP。

該類型的優點是,二氧化碳固定效率比C3高很多,有利於植物在乾旱環境生長。C3植物行光合作用所得的澱粉會貯存在葉肉細胞中,因為這是卡爾文循環的場所,而維管束鞘細胞則不含葉綠體。而C4植物的澱粉將會貯存於維管束鞘細胞內,因為C4植物的卡爾文循環是在此發生的。

景天酸代謝植物

景天酸代謝(crassulacean acid metabolism, CAM): 如果說C4植物是空間上錯開二氧化碳的固定和卡爾文循環的話,那景天酸循環就是時間上錯開這兩者。行使這一途徑的植物,是那些有著膨大肉質葉子的植物,如鳳梨。這些植物晚上開放氣孔,吸收二氧化碳,同樣經哈奇-斯萊克途徑將CO2固定。早上的時候氣孔關閉,避免水分流失過快。同時在葉肉細胞中開爾文循環開始。這些植物二氧化碳的固定效率也很高。

藻類和細菌的光合作用

真核藻類,如紅藻、綠藻、褐藻等,和植物一樣具有葉綠體,也能夠進行產氧光合作用。光被葉綠素吸收,而很多藻類的葉綠體中還具有其它不同的色素,賦予了它們不同的顏色。

進行光合作用的細菌不具有葉綠體,而直接由細胞本身進行。屬於原核生物的藍藻(或者稱「藍細菌」)同樣含有葉綠素,和葉綠體一樣進行產氧光合作用。事實上,目前普遍認為葉綠體是由藍藻進化而來的。其它光合細菌具有多種多樣的色素,稱作細菌葉綠素或菌綠素,但不氧化水生成氧氣,而以其它物質(如硫化氫、硫或氫氣)作為電子供體。不產氧光合細菌包括紫硫細菌、紫非硫細菌、綠硫細菌、綠非硫細菌和太陽桿菌等。

研究意義

研究光合作用,對農業生產,環保等領域起著基礎指導的作用。知道光反應暗反應的影響因素,可以趨利避害,如建造溫室,加快空氣流通,以使農作物增產。人們又了解到二磷酸核酮糖羧化酶的兩面性,即既催化光合作用,又會推動光呼吸,正在嘗試對其進行改造,減少後者,避免有機物和能量的消耗,提高農作物的產量。

當了解到光合作用與植物呼吸的關系後,人們就可以更好的布置家居植物擺設。比如晚上就不應把植物放到室內,以避免因植物呼吸而引起室內氧氣濃度降低。

【設計】 光合作用是綠色植物在光下把二氧化碳和水合成有機物(澱粉等),同時放出氧氣的過程。本實驗應用對比的方法,使學生認識:(1)綠葉能製造澱粉;(2)綠葉必須在光的作用下才能製造出澱粉。

【器材】 天竺葵一盆、燒杯、錐形瓶、酒精燈、三腳架、石棉網、棉絮、鑷子、白瓷盤、酒精、碘酒、厚一些的黑紙、曲別針。

【步驟】

1.將天竺葵放在黑暗處一二天,使葉內的澱粉盡可能多地消耗掉。

2.第三天,取出放在黑暗處的天竺葵,選擇幾片比較大、顏色很綠的葉子,用黑紙將葉的正反面遮蓋。黑紙面積約等於葉片面積的二分之一,正反面的黑紙形狀要一樣,並且要對正,用曲別針夾緊(如圖)。夾好後,把天竺葵放在陽光下曬4~6小時。

3.上課時,採下一片經遮光處理的葉和另一片未經遮光處理的葉(為了便於區別,可使一片葉帶葉柄,另一片葉不帶葉柄),放在沸水中煮3分鍾,破壞它們的葉肉細胞。

4.把用水煮過的葉子放在裝有酒精的錐形瓶中(酒精量不超過瓶內容積的二分之一),瓶口用棉絮堵嚴。將錐形瓶放在盛著沸水的燒杯中,給酒精隔水加熱(如圖),使葉綠素溶解在酒精中。待錐形瓶中的綠葉已褪色,變成黃白色時,撤去酒精燈,取出葉片。把葉片用水沖洗後放在白瓷盤中。

5.將葉片展開鋪平,用1∶10的碘酒稀釋液,均勻地滴在二張葉片上。過一會兒可以觀察到:受到陽光照射的葉子全部變成藍色;經遮光處理過的葉子,它的遮光部分沒變藍,只有周圍受光照射的部分變藍。由此可以說明,綠葉能製造澱粉,綠葉只有在光的照射下才能製造出澱粉。

【注意】

1.碘的濃度過大時,葉片的顏色不顯藍,而顯深褐色。對存放時間過久的碘酒,因酒精蒸發使碘的濃度增大,可適當多加一些水稀釋。

2.酒精燃點低,一定要在燒杯中隔水加熱,千萬不要直接用明火加熱,以免著火。
光合作用是指綠色植物通過葉綠體,利用光能,把二氧化碳和水轉化成儲存著能量的有機物,並且釋放出氧的過程。我們每時每刻都在吸入光合作用釋放的氧。我們每天吃的食物,也都直接或間接地來自光合作用製造的有機物。那麼,光合作用是怎樣發現的呢?

光合作用的發現 直到18世紀中期,人們一直以為植物體內的全部營養物質,都是從土壤中獲得的,並不認為植物體能夠從空氣中得到什麼。1771年,英國科學家普利斯特利發現,將點燃的蠟燭與綠色植物一起放在一個密閉的玻璃罩內,蠟燭不容易熄滅;將小鼠與綠色植物一起放在玻璃罩內,小鼠也不容易窒息而死。因此,他指出植物可以更新空氣。但是,他並不知道植物更新了空氣中的哪種成分,也沒有發現光在這個過程中所起的關鍵作用。後來,經過許多科學家的實驗,才逐漸發現光合作用的場所、條件、原料和產物。1864年,德國科學家薩克斯做了這樣一個實驗:把綠色葉片放在暗處幾小時,目的是讓葉片中的營養物質消耗掉。然後把這個葉片一半曝光,另一半遮光。過一段時間後,用碘蒸氣處理葉片,發現遮光的那一半葉片沒有發生顏色變化,曝光的那一半葉片則呈深藍色。這一實驗成功地證明了綠色葉片在光合作用中產生了澱粉。1880年,德國科學家恩吉爾曼用水綿進行了光合作用的實驗:把載有水綿和好氧細菌的臨時裝片放在沒有空氣並且是黑暗的環境里,然後用極細的光束照射水綿。通過顯微鏡觀察發現,好氧細菌只集中在葉綠體被光束照射到的部位附近;如果上述臨時裝片完全暴露在光下,好氧細菌則集中在葉綠體所有受光部位的周圍。恩吉爾曼的實驗證明:氧是由葉綠體釋放出來的,葉綠體是綠色植物進行光合作用的場所。

光合作用的過程:1.光反應階段 光合作用第一個階段中的化學反應,必須有光能才能進行,這個階段叫做光反應階段。光反應階段的化學反應是在葉綠體內的類囊體上進行的。暗反應階段 光合作用第二個階段中的化學反應,沒有光能也可以進行,這個階段叫做暗反應階段。暗反應階段中的化學反應是在葉綠體內的基質中進行的。光反應階段和暗反應階段是一個整體,在光合作用的過程中,二者是緊密聯系、缺一不可的。光合作用的重要意義 光合作用為包括人類在內的幾乎所有生物的生存提供了物質來源和能量來源。因此,光合作用對於人類和整個生物界都具有非常重要的意義。第一,製造有機物。綠色植物通過光合作用製造有機物的數量是非常巨大的。據估計,地球上的綠色植物每年大約製造四五千億噸有機物,這遠遠超過了地球上每年工業產品的總產量。所以,人們把地球上的綠色植物比作龐大的「綠色工廠」。綠色植物的生存離不開自身通過光合作用製造的有機物。人類和動物的食物也都直接或間接地來自光合作用製造的有機物。 第二,轉化並儲存太陽能。綠色植物通過光合作用將太陽能轉化成化學能,並儲存在光合作用製造的有機物中。地球上幾乎所有的生物,都是直接或間接利用這些能量作為生命活動的能源的。煤炭、石油、天然氣等燃料中所含有的能量,歸根到底都是古代的綠色植物通過光合作用儲存起來的。

第三,使大氣中的氧和二氧化碳的含量相對穩定。據估計,全世界所有生物通過呼吸作用消耗的氧和燃燒各種燃料所消耗的氧,平均為10000 t/s(噸每秒)。以這樣的消耗氧的速度計算,大氣中的氧大約只需二千年就會用完。然而,這種情況並沒有發生。這是因為綠色植物廣泛地分布在地球上,不斷地通過光合作用吸收二氧化碳和釋放氧,從而使大氣中的氧和二氧化碳的含量保持著相對的穩定。 第四,對生物的進化具有重要的作用。在綠色植物出現以前,地球的大氣中並沒有氧。只是在距今20億至30億年以前,綠色植物在地球上出現並逐漸佔有優勢以後,地球的大氣中才逐漸含有氧,從而使地球上其他進行有氧呼吸的生物得以發生和發展。由於大氣中的一部分氧轉化成臭氧(O3)。臭氧在大氣上層形成的臭氧層,能夠有效地濾去太陽輻射中對生物具有強烈破壞作用的紫外線,從而使水生生物開始逐漸能夠在陸地上生活。經過長期的生物進化過程,最後才出現廣泛分布在自然界的各種動植物。

植物栽培與光能的合理利用 光能是綠色植物進行光合作用的動力。在植物栽培中,合理利用光能,可以使綠色植物充分地進行光合作用。合理利用光能主要包括延長光合作用的時間和增加光合作用的面積兩個方面。

延長光合作用的時間 延長全年內單位土地面積上綠色植物進行光合作用的時間,是合理利用光能的一項重要措施。例如,同一塊土地由一年之內只種植和收獲一次小麥,改為一年之內收獲一次小麥後,又種植並收獲一次玉米,可以提高單位面積的產量。

增加光合作用的面積 合理密植是增加光合作用面積的一項重要措施。合理密植是指在單位面積的土地上,根據土壤肥沃程度等情況種植適當密度的植物.

中國解決光合作用效率世界難題

雲南生態農業研究所所長那中元開發的作物基因表型誘導調控表達技術(GPIT),在世界上第一個成功地解決了提高光合作用效率的難題。

提高農作物產量有多種途徑,其中之一是提高作物光合作用效率,而如何提高則是一個世界難題,許多發達國家開展了多年研究,但至今未見成功的報道。

那中元開發的GPIT技術率先解決了這一難題,據西藏、雲南、山東、黑龍江、吉林等省、自治區試驗結果,使用GPIT技術,不同作物的光合作用效率可分別提高50%至400%以上。

雲南省西北部的迪慶藏族自治州中甸高原壩區海拔3276米,玉米全生育期有效積溫493℃,不到世界公認有效積溫最低極限的一半;玉米苗期最低氣溫零下5.4℃,地表最低氣溫零下9.5℃。但使用GPIT技術試種的玉米仍生長良好,獲得每畝499公斤的高產。

1999年在海拔3658米的拉薩試種的玉米,單株最多長出八穗,全部成熟,且全是高賴氨酸優質玉米。全國高海拔地區和寒冷地區的試驗示範表明,應用GPIT技術可使作物的生育期大為縮短,小麥平均縮短7至15天,水稻平均縮短10至20天,玉米平均縮短30至40天。

GPIT技術還解決了農作物自身抗性表達,高抗根、莖、葉多種病害的世紀難題。1999年在昆明市官渡區進行了百畝小麥連片對照試驗,未使用GPIT技術的小麥三次施用農葯,白粉病仍很嚴重;而應用GPIT技術處理的百畝小麥,不用農葯,基本不見病株。

熱點內容
夏季里荷花開 發布:2025-09-11 10:33:00 瀏覽:448
櫻花圖簡筆 發布:2025-09-11 10:11:36 瀏覽:152
劍川紅蘭花 發布:2025-09-11 10:11:35 瀏覽:157
扇子花卉 發布:2025-09-11 10:10:45 瀏覽:128
七夕新華網 發布:2025-09-11 09:35:11 瀏覽:120
一支玫瑰圖片唯美圖片 發布:2025-09-11 09:29:58 瀏覽:448
一朵攀枝花 發布:2025-09-11 09:18:55 瀏覽:689
雙溝牡丹系列酒價格 發布:2025-09-11 09:12:32 瀏覽:493
淮安丁香 發布:2025-09-11 08:57:46 瀏覽:948
衛生紙玫瑰 發布:2025-09-11 08:57:41 瀏覽:180